Perforating Options Currently Available in Horizontal Shale Oil and Gas Wells

Kerry Daly, Global BD Manager- DST TCP
Scope/ Contents:

Study Based on US Market:
- Specifically the Eagle Ford in south Texas
- Most active because it is liquid-rich play
- Technology Developed Here

Beyond Scope:
- Open Hole Sliding Sleeve Systems

Contents:
- Discuss each step in the horizontal completion process
 - Technology being used as well as optional systems
 - Relative cost
 - Reasoning used to determine methodology.
- How it relates to MENA operations
Eagle Ford Shale:

Typical Well Parameters:

- **Vertical Section:** 10,000-12,000 ft.
- **Horizontal Lateral:** 5,000-10,000 ft.
- **Typical Casing:** 4-1/2 in. or 5-1/2 in. OD
- **Toe:** Considered first 500 ft.
- **Components of fracture (after perforating):**
 - Formation breaks down ~10,000 psi
 - Accomplished with no tubulars in well
 - i.e. “Bullheading”

Typical Total Well Cost ~$6-8 Million:

- Biggest single cost is formation stimulation, i.e. fracturing
- Regarding perforating choices, biggest cost factors are:
 - Frac standby costs- ~$2,000 per hour
 - Coiled Tubing (CT) run costs- ~$40,000 per day
- Attempts to reduce these costs are driving development of
 - New perforating technology
 - Alternate technology (non-explosive)
First Run In> Clean out Run

Run is becoming optional to reduce time and cost

- **If Conveyed by Workover Rig:**
 - Run a traditional Bit & Scraper

- **If Conveyed by Coiled Tubing (CT):**
 - Accomplished with Mill and Motor or Jetting Tool
 - Ideally, to save Time and Money, combine Clean out with Toe Prep
 - Combining guns with clean out not currently done.
 - Non-explosive systems are available that do this- Abrasive Jetting
 - However these are expensive and not that effective
 - Recent job created 46% of holes attempted.
 - As a result, systems are not being used that much
Parameters:

- First operation after clean-out, no open perforations yet.
- Covers the first 500 ft. of wellbore
- Stages consist of 1 - 10 guns
 - Gun lengths: 1 - 6 ft. long
 - Gun OD: 2-3/4”, 2-7/8”, 3-1/8”, 3-3/8” depending on casing size
 - Gun Type: 6 SPF, 60 degree with DP or Super DP charges
 - Guns typically not oriented, let pressure determine fracture path
If Conveyed by Workover Rig:

- **Job Parameters:**
 - One or many pressure-activated firing heads fired at same time
 - May or may not have time delays attached
 - WL correlation not required, pipe tally used
 - Packer normally not run
 - Gun assemblies spaced out with tubing between, no length limitation

- **Total trip time:** ~8 - 12 hours
- **Cost:**
 - Rig ~$10,000 per day
 - TCP ~ $15,000
 - **Estimated total ~$25,000**
- **Risk:** If gun doesn’t fire, lost time + additional trip on pipe required

If Conveyed by Coiled Tubing (CT):

- **Job Parameters:**
 - One pressure-activated or ball-drop differential firing fires first gun
 - Time delays between guns allow CT to move to next zone
 - Number of guns and zones limited by surface lubricator length and crane height (~70 ft.)
 - WL correlation not required, pipe tally used

- **Total trip time:** ~6 - 10 hours
- **Cost:**
 - CT unit ~$40,000 per day
 - TCP ~ $15,000
 - **Estimated total ~$55,000**
- **Risk:** If gun doesn’t fire, lost time + additional trip on CT

Drivers

To reduce cost, new technology has been developed which requires no rig or CT.
Alternatives

- **To eliminate the cost of CT Toe Prep**

Casing Toe Gun

- Attached to outside of casing and run as part of casing string
 - Run just above float collar/shoe and cemented in place
 - Requires larger borehole, which drives drilling cost
 - Requires high-temperature explosives, more expensive
 - Guns are downhole longer, risk leak at o-rings
- After the cement cures, pressure up to rupture disk or shear pins to fire gun
- Removes Workover Rig/CT costs and run time
- Creates limited perforations, usually maximum 10-ft. so entire toe is not prepped.
 - Requires pressure pumping
 - Requires subsequent WL pump down perforating
- **Cost:**
 - TCP ~ $15,000
 - WL Perforating~$10,000
 - Estimated total ~$25,000 (larger borehole costs not included)
- **Risk:** If gun doesn’t fire or unable to establish pump rate, must perform traditional TCP toe prep.
Alternatives

- **Becoming the System of Choice, Saves Two Coiled Tubing Runs.**

Casing Toe Sleeve

- Run just above float collar/ shoe and cemented in place
- After the cement cures, pressure up to rupture disk or shear pins
 - Pressure shifts a sleeve, which opens ports to expose formation to frac pressure
 - Optional fluid metering allows casing test prior to opening
- Safer option as no explosives used
- Removes Workover Rig/ CT costs and run time
- Doesn’t create perforations, just access to formation
 - Requires pressure pumping
 - Requires subsequent WL pump down perforating
- Cost:
 - TCP ~ $15,000
 - WL Perforating~$10,000
 - Estimated total ~$25,000
- Risk: If sleeve doesn’t open or unable to establish pump rate, must perform traditional TCP toe prep.
- To limit cement sheath at tool, must over-displace cement, may need to retard cement
 - Risks fluid movement behind pipe

System Comparison

<table>
<thead>
<tr>
<th></th>
<th>Casing OD</th>
<th>Tool OD</th>
<th>Min. Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toe Gun</td>
<td>4-1/2 in.</td>
<td>7.50 in.</td>
<td>8-1/4 in.</td>
</tr>
<tr>
<td>Toe Sleeve</td>
<td>4-1/2 in.</td>
<td>5.75 in.</td>
<td>6-1/4 in.</td>
</tr>
</tbody>
</table>
Next Step> Fracture the toe (first stage)

- Regardless of how toe is perforated

Parameters:

- Perforations have established flow path
- Components of fracture (after perforation)
 - Formation breaks down at \(~10,000\) psi
 - Fractures propagate best at \(~100\) bbl/min
 - Bull head through the casing
 - Allows higher pump-in rates
• Combination Plug & Perforation System

Parameters:

• Run time is only 2-3 hours
• First set a Composite Frac Plug
• Then move uphole to fire guns, 1-10 typically as Select-Fire with reverse polarity switches
• At end of run, circulate a ball into the Composite Frac Plug
 ➢ This seals the zone below and allows fracturing through newly created perforations
• Risks: High failure rate- statistically 1 in 7 (15%) experience some time of failure
 ➢ Simplest failure: electrical short resulting in 4-6 hours lost time at ~$2,000/ hour standby.
 ➢ Most complex failure: parted line with live guns lost in hole resulting in 50 hours lost time.
• Rewards: Short operating time, limiting frac standby costs
 ➢ Unlimited stages can be performed
 ➢ Benefits far outweigh the risks!
 ➢ WL Pump-down Plug and Perf is the preferred method- not going away!
Wireline (e-Line) Pump Down

• Other Risks:
 - Formation fails to break down
 - If can’t generate minimum 10 bbl/min, then cannot pump down WL guns
 - If WL bridges out during pump down operations due to residual fill in casing
 - Wellbore has not been reentered since frac event
 - Necessary to run a TCP system to complete the stage

• Cost:
 - WL Perforating~$10,000 per stage (additional cost of water not included)
 - Estimated total ~$10,000

• Operation:
 - Set composite fracture plug, isolates previous stage
 - Typically have residual pressure on wellbore: 1,000-4,000 psi
 - Pressure control equipment required
 - Requires high volume pumping to position guns, 10 – 18 bbl/min
 - Maximum running speed ~200 ft/min
Alternatives

- **CT Vibration Systems using TCP Guns (emerging technology)**
- **CT TCP Plug & Perf Systems**

 Annular Pressure Firing System
 - Set a Composite Frac Plug (lower applied pressure), then fire guns (higher applied pressure)
 - Formation must hold pressure in order to fire
 - Not always possible as formation has just been broken down
 - Cost:
 - CT unit \(~\$40,000\) per day
 - TCP assembly \(~\$20,000\) (includes plug)
 - Estimated total \(~\$60,000\)
 - Risks:
 - CT slow, \(~6-8\) hour trip time
 - Incurring frac standby costs
 - Live well with surface pressure, so must choose firing head carefully (differential type preferred)
 - Live well with surface pressure, so may need to bleed down to meet firing head safety criteria
 - Rewards:
 - Not pumping down, so not subject to high pressure fluid ingress or high fluid costs
 - Not electrical, so not subject to electrical safety issues or failure points
 - One-trip plug and perf system saves cost of CT run
Alternatives

CT TCP Plug & Perf Systems

Tubing Pressure Firing System

- Set a Composite Frac Plug (lower applied pressure), then fire guns (higher applied pressure)
- Closed system when firing, so formation not pressured against
- Cost:
 - CT unit ~$40,000 per day
 - TCP assembly ~$20,000 (includes plug)
 - Estimated total ~$60,000
- Risks:
 - CT slow, ~6-8 hour trip time
 - Incurring frac standby costs
 - Live well, so surface pressure may need to be bled to meet firing head pin safety criteria
- Rewards:
 - Not pumping down, so not subject to high pressure fluid ingress or high fluid costs
 - Not electrical, so not subject to electrical safety issues or failure points
 - One-trip plug and perf system saves cost of CT run
Next Step: Milling of Composite Plugs

- Brings Well onto Production

Parameters:

- Mill up Composite Frac Plugs
 ➢ By Workover or Coiled Tubing
- Flow-back and well-test clean up
 ➢ May lasts from two days to several months, depending on client’s plans
- Well is put on Production
Summary

Steps:

1. Clean-out Run> first run after running casing and cementing (becoming optional)
 • Alternate: Combination CT Clean-out with Abrasive Jet Perforating (non-explosive)
2. TCP Toe Prep> required as no perforations yet (can’t pump into formation)
 • Two primary methods- 1) Tubing conveyed on Workover Rig or 2) Coiled Tubing conveyed
 ➢ Alternate: Casing Toe Gun, run on casing but requires larger bore hole and high-temp explosives
 ➢ Alternate: Casing Toe Sleeve, run on casing but requires over-displacement of cement (becoming method of choice for toe prep)
3. Bullhead Frac down casing
4. Wireline Pump-down Plug and Perf> unlimited stages but risky (method of choice after flow into formation established)
 • Alternate: TCP Plug and Perf (annular pressure)
 • Alternate: TCP Plug and Perf (tubing pressure)
 ➢ Each stage followed by Bullhead Frac down casing
5. Mill up Composite Plugs
 • Frac flow back, Clean up, and put well on Production
Application to MENA

- Historically drilling horizontal wells
- Activity is building in many areas
- Technology is easily transferrable
 - Dependent on availability of equipment
 - Dependent of availability of qualified service personnel.

Questions?

Thank You!