Novel Perforating Charges Maximizes Oil Production
verifying the Modeled Perforation Performance

Mahmood Khamis Al Kalbani, Hassan Al Saadi, Muhammad Mirza, Zul Anwar MEDCO LLC(Oman)
Ozgur Karacali, Bruno Alves, Mohammed Taiwani, Schlumberger Oman
Outline:

- Background
- Challenges of Horizontal Well Perforating
- Workflow & Method
- Gun Comparison
- Results and Discussions
- Conclusion
BACKGROUND

- Anon-active; unconnected promising field within a mature cluster was re-discovered
- A right decision drilling & completion technique to be reviewed
- Heavy oil is the main factor to be considered
CHALLENGES

- Available Well location and target made the decision to complete the well – highly deviated
- Time and outcome as the constraint
- Perforating long intervals on horizontal wells requires a dedicated understanding of the reservoir properties and diligent perforation design.
- Medco decided to perforate the long interval (133 m) of a highly deviated well
- minimizing the number of runs required throughout three reservoir intervals.

<table>
<thead>
<tr>
<th>Meas Depth</th>
<th>Incl</th>
<th>Azim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,339.00</td>
<td>77.58</td>
<td>181.61</td>
</tr>
<tr>
<td>1,357.00</td>
<td>80.03</td>
<td>184.59</td>
</tr>
<tr>
<td>1,376.00</td>
<td>82.08</td>
<td>185.00</td>
</tr>
<tr>
<td>1,396.00</td>
<td>82.40</td>
<td>185.63</td>
</tr>
<tr>
<td>1,415.00</td>
<td>80.28</td>
<td>186.32</td>
</tr>
<tr>
<td>1,434.00</td>
<td>82.50</td>
<td>184.66</td>
</tr>
<tr>
<td>1,453.00</td>
<td>81.83</td>
<td>184.34</td>
</tr>
<tr>
<td>1,471.00</td>
<td>84.69</td>
<td>180.82</td>
</tr>
<tr>
<td>1,484.00</td>
<td>85.35</td>
<td>178.52</td>
</tr>
<tr>
<td>1,500.00</td>
<td>85.50</td>
<td>176.00</td>
</tr>
</tbody>
</table>
WORKFLOW & METHOD

- An underbalanced perforating strategy was embraced to better clean the perforation tunnels.
- Perforating design was performed by perforation analysis software to compare the various gun systems and the resulting well productivities.
- Perforations were conveyed on tubing and the gun shock models were created.
RESULTS:

- The perforation operation was successfully performed without any operational and HSE issues.
- The actual production was in line with the expectations as predicted by the perforation analysis software.
- Production from the well was actually better than the neighboring wells in the same region.
DISCUSSION

• The incremental cost on the perforation gun system has imperatively paid off by the gained production of oil.

• The rock based perforation penetration and a productivity model is an important input.
CONCLUSION

• The lessons learned from the operational stand point as well as the well to reservoir communication efficiencies as predicted and actually occurred.
• The choice on the novel perforation charge selection proved to be a fulfilling the needs
• The predicted production rates were matched by actual oil production proving the certainty of the input parameters for productivity modeling such as
 • reservoir permeability,
 • porosity
 • the fluid characteristics
ACKNOWLEDGEMENT

The authors would like to thank to:
• The Sultanate of Oman Ministry of Oil and Gas
• PDO
• the management of Medco LLC Oman, for giving their permission for this presentation to be published.

We also thank many to
• Our dedicated colleagues, either in the field or in Muscat office, who provided valuable support for the project execution.
• The special contribution from the Schlumberger Oman team is gratefully acknowledged.