Shaped Charge Perforator Engineering for Targeted Applications

John Hardesty
Principal Research Engineer, GEODynamics, Inc.
john.hardesty@perf.com
Outline

- Introduction
 - Perforation Performance Evaluation
 - Perforation Geometry and Implications

- Design and Field Applications
 - General Purpose: Berea Sandstone
 - High Permeability SS: Castlegate Sandstone
 - Pre Frac: Mancos Shale

- Conclusions
Perforation Performance Evaluation

- **Single Shot Flow Cell**
 - Not Perfect Simulation
 - Does not represent near wellbore damage
 - Does not represent near wellbore stress state
 - Does not show perforation interaction
 - Improvement or reduction in performance does not necessarily mean same in field

- Still a very useful tool.
Perforation and Well Geometry

- Perforations Near WB
- Interaction of perforation geometry with near wellbore geometry
- Improved perforation may not improve some wells
 - (too much or too little damage)
- Critical for others
Reactive Perforating

- Designed for improved tunnel geometry
- Intermetallic reaction between charge liner materials, triggered by detonation pressure
- Exothermic reaction
 - Heats tunnel volume & near-tunnel pore space
 - Consumes supporting liner material
- Breaks up and expels debris from tunnel
- Effect occurs in each tunnel, independently
- Clean tunnels with less reliance on surge
Design for Sandstone, Natural Completion

- 5” x 18” Targets
- OMS Working Fluid
- Axial Flow Permeability
- 1000 psi Back Pressure
- Overburden: 8000 psi
- Pore: 4000 psi
- Wellbore: varies
- Axial Flow Evaluation
- Slight Dynamic OB
Design for Sandstone, Natural Completion

- Axial Flow Evaluation
- Minimal Dynamic OB
- Production Ratio Flow Evaluation
- Perforations Measured and Targets Split
- Tunnels Unaltered
Laboratory Evaluation: Berea Sandstone

- 15g HMX Conventional Baseline:
- API RP 19B 35.1”
- Berea Sandstone
 - 100-150 mD
 - 19% porosity
 - 7000 psi UCS
- Typical Penetration:
 - 8-9 inches
 -Insensitive to initial balance
Laboratory Evaluation: Berea Sandstone

- 15g HMX Reactive

Reactive Component:
- Applies Radial Mechanical and Thermal Energy
- Prevents formation of wedged target pack
- Causes Clean up and Fractures

Design Criteria:
- Equal or Better Penetration in 7K-10K UCS Sandstone
- Improved Geometry
- Improved Flow

Liner material modified to incorporate reactive materials
Perforation Geometry
Berea Sandstone at Maximum Overbalance
Berea Sandstone Flow Performance

<table>
<thead>
<tr>
<th>Charge</th>
<th>Balance (psi)</th>
<th>Pen. (in)</th>
<th>Permeability (mD)</th>
<th>Post S Flow (mD)</th>
<th>PR</th>
<th>Flow Imp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2715 Conventional</td>
<td>1000</td>
<td>9.20</td>
<td>142</td>
<td>60</td>
<td>0.42</td>
<td>-</td>
</tr>
<tr>
<td>2715 Reactive</td>
<td>1000</td>
<td>8.20</td>
<td>143</td>
<td>106</td>
<td>0.74</td>
<td>76%</td>
</tr>
<tr>
<td>2715 Conventional</td>
<td>500</td>
<td>6.20</td>
<td>106</td>
<td>53</td>
<td>0.50</td>
<td>-</td>
</tr>
<tr>
<td>2715 Reactive</td>
<td>500</td>
<td>8.60</td>
<td>106</td>
<td>86</td>
<td>0.81</td>
<td>61%</td>
</tr>
<tr>
<td>2715 Conventional</td>
<td>0</td>
<td>8.85</td>
<td>130</td>
<td>79</td>
<td>0.60</td>
<td>-</td>
</tr>
<tr>
<td>2715 Reactive</td>
<td>0</td>
<td>9.05</td>
<td>111</td>
<td>102</td>
<td>0.92</td>
<td>52%</td>
</tr>
<tr>
<td>2715 Conventional</td>
<td>-500</td>
<td>9.05</td>
<td>113</td>
<td>88</td>
<td>0.79</td>
<td>-</td>
</tr>
<tr>
<td>2715 Reactive</td>
<td>-500</td>
<td>9.10</td>
<td>140</td>
<td>170</td>
<td>1.22</td>
<td>55%</td>
</tr>
</tbody>
</table>
Berea Sandstone Flow Performance

Production Ratio vs. Overbalance for 15g Conventional and 15g Reactive (TM) Charges in Berea at 4000 psi Effective Stress

GEODynamics Shaped Charge Perforator Engineering for Targeted Applications
24-25 April, Asia-Pacific Perforating Symposium, Kuala Lumpur, Malaysia
Laboratory Evaluation: Berea Sandstone

- Flow Performance is 55% to 76% superior to the conventional charge at every balance condition.
- Reactive Charge at 1000 psi overbalance performed equivalently to the conventional charge at 500 psi underbalance.
- With slight underbalance, the reactive perforation tunnel flow performance surpasses 1.0 Production Ratio.
Field Applications • Shoot and Produce

- Wells in which no stimulation is required
- Success = increased productivity
- Bonus = reduced cost, complexity, risk
 - Eliminate underbalance, release rig (TCP to W/L)

Examples:
- Thailand • +50% initial productivity based on performance of appraisal wells perforated with premium system
- Pakistan • 3x productivity of previous best-in-field well
- North Sea • Equivalent productivity with 1 run vs. 3 runs
Field Applications • Re-Perforation

- Generally a tough task for perforators
 - Effective stress increases as reservoir pressure drops
 - Hard to apply underbalance with open perforations etc.

- Success = increased productivity

- Examples:
 - **UK** • 30x productivity after re-perforation (best in field)
 - **USA** • 10x productivity ... more than 2x the increase seen re-perforating offset wells with conventional systems
 - **USA** • 10x increase in gas well production after re-perforation ... already shot twice with premium DP system
Design for High Perm Sandstone

- 15g and 23g Charges
- API RP 19B: 35.1"
- Castlegate Sandstone
 - 700-900 mD
 - 20-21% porosity
 - Less than 5000 psi UCS
- Typical Penetration:
 - 10-13 inches
 - Insensitive to initial balance
Design for High Perm Sandstone

- 15g HMX Reactive HP
- Reactive Component:
 - Redesign of standard Reactive Charge
 - Reactive Component modified for optimal geometry in Castlegate Sandstone
- Design Criteria:
 - Performance at Overbalance Condition
 - Improve Geometry and Flow Performance Overall
2000 PSI Overbalance Condition
1000 PSI Overbalance Condition
500 PSI Underbalance Condition
Castlegate Sandstone Performance

<table>
<thead>
<tr>
<th>Charge</th>
<th>Balance (psi)</th>
<th>Pen. (in)</th>
<th>Permeability (mD)</th>
<th>Post S Flow (mD)</th>
<th>PR</th>
<th>Flow Imp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15g Conventional</td>
<td>1000</td>
<td>12.40</td>
<td>750</td>
<td>432</td>
<td>0.58</td>
<td>-</td>
</tr>
<tr>
<td>15g Reactive</td>
<td>1000</td>
<td>10.90</td>
<td>830</td>
<td>760</td>
<td>0.92</td>
<td>59%</td>
</tr>
<tr>
<td>15g Conventional</td>
<td>0</td>
<td>13.70</td>
<td>660</td>
<td>890</td>
<td>1.35</td>
<td>-</td>
</tr>
<tr>
<td>15g Reactive</td>
<td>0</td>
<td>10.90</td>
<td>870</td>
<td>1246</td>
<td>1.43</td>
<td>6%</td>
</tr>
<tr>
<td>15g Conventional</td>
<td>-500</td>
<td>11.67</td>
<td>776</td>
<td>960</td>
<td>1.24</td>
<td>-</td>
</tr>
<tr>
<td>15g Reactive</td>
<td>-500</td>
<td>9.55</td>
<td>899</td>
<td>1476</td>
<td>1.64</td>
<td>33%</td>
</tr>
</tbody>
</table>
Castlegate Sandstone Flow Performance

Production Ratio vs. Overbalance for 15g Conventional and 15g Reactive™ Charges in Castlegate at 4000 psi Effective Stress
Laboratory Evaluation: Castlegate

- Flow Performance is 6% to 59% superior to the conventional charge at every balance condition.
- Optimized Reactive Charge provided a PR of 0.92 at overbalance condition.
- Conventional charge produced deeper tunnels, however reactive design produces cleaner perforations, with better side wall condition.
Field Applications • Low Strength Rock

- Success = reduce TSS at same/higher rate due to greater number of open tunnels and reduced flux rate

- Example:
 - Oman • Well produced 2x gross liquids of comparable offsets but only 10% of the field average sand rate
 - North Sea • Excellent Performance on High Perm Injection Wells
Design for Pre-Frac: Shale

- 15g Conventional
- 15g Reactive
- 23g Conventional
- 23g Reactive
- 23g Conventional XEH
- 23g Reactive XEH

Liner material modified to incorporate reactive materials
Shaped Charges: Design Strategy

- **Reactive Component:**
 - Applies Radial Mechanical and Thermal Energy
 - Prevents formation of wedged target pack
 - Causes Clean up and Fractures

- **Design Criteria:**
 - Improved Hole Size Distribution
 - Improved Geometry
 - Improved Flow
Laboratory Evaluation: Procedure

- 5” x 18” Targets
- OMS Working Fluid
- Overburden: 8000 psi
- Pore: 4000 psi
- Wellbore: varies
- Slight Dynamic OB
- Perforations Measured and Targets Split
- Tunnels Unaltered
Perforation Geometry in Sandstone
Mancos Shale Perforation Geometry

- 15g Charges
 - Upper: Conventional
 - Lower: Reactive

- Conventional 15g
 - 2.60” Open Tunnel
 - 0.09” Max Diameter

- Reactive 15g
 - 6.25” Open Tunnel
 - 0.19” Max Diameter
 - 140% Improvement vs. Conventional
Mancos Shale Perforation Geometry

- **23g Charges**
 - Upper: Conventional
 - Lower: Reactive

- **Conventional**
 - 3.60” Open Tunnel
 - 0.23” Max Diameter
 - Improvement over 15g

- **Reactive**
 - 5.60” Open Tunnel
 - 0.3” Max Diameter
 - Best Total Penetration
 - Inferior to: 15g Reactive, 23g Conventional XEH, and 23g Reactive XEH
Mancos Shale Perforation Geometry

- **23g XEH Charges**
 - Upper: Conventional
 - Lower: Reactive

- **Conventional XEH**
 - 5.75” Open Tunnel
 - 0.27” Max Diameter
 - Best Conventional Performance
 - Exceeds 23g Reactive

- **Reactive XEH**
 - 8.10” Open Tunnel
 - 0.36” Max Diameter
 - Improved Tip Geometry
 - XEH Design Superior for Shale
Lab Evaluation Results: Mancos Shale

<table>
<thead>
<tr>
<th>Charge</th>
<th>Balance (psi)</th>
<th>Open Tunnel (in)</th>
<th>Pen (in)</th>
<th>% Clear (%)</th>
<th>Max Tunnel Dia (in)</th>
<th>Tunnel @ 90% (in)</th>
<th>Tunnel Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>15g Conventional</td>
<td>500 Under</td>
<td>2.55</td>
<td>6.5</td>
<td>39%</td>
<td>0.18</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>15g Reactive™</td>
<td>500 Under</td>
<td>6.10</td>
<td>6.4</td>
<td>95%</td>
<td>0.32</td>
<td>0.21</td>
<td>139%</td>
</tr>
<tr>
<td>15g Conventional</td>
<td>Balanced</td>
<td>1.70</td>
<td>7.8</td>
<td>22%</td>
<td>0.27</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>15g Reactive™</td>
<td>Balanced</td>
<td>6.95</td>
<td>7</td>
<td>99%</td>
<td>0.3</td>
<td>0.12</td>
<td>309%</td>
</tr>
<tr>
<td>15g Conventional</td>
<td>500 Over</td>
<td>2.60</td>
<td>8.1</td>
<td>32%</td>
<td>0.23</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>15g Reactive™</td>
<td>500 Over</td>
<td>6.25</td>
<td>7.2</td>
<td>87%</td>
<td>0.29</td>
<td>0.19</td>
<td>140%</td>
</tr>
<tr>
<td>23g Conventional</td>
<td>500 Over</td>
<td>3.60</td>
<td>9.4</td>
<td>38%</td>
<td>0.23</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>23g Reactive™</td>
<td>500 Over</td>
<td>5.60</td>
<td>10.5</td>
<td>53%</td>
<td>0.31</td>
<td>0.21</td>
<td>56%</td>
</tr>
<tr>
<td>23g Conventional XEH</td>
<td>500 Over</td>
<td>5.75</td>
<td>8.8</td>
<td>65%</td>
<td>0.27</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>23g Reactive™ XEH</td>
<td>500 Over</td>
<td>8.10</td>
<td>9.2</td>
<td>88%</td>
<td>0.36</td>
<td>0.23</td>
<td>41%</td>
</tr>
</tbody>
</table>
CT Scans, Mancos Shale, 23g XEH Charges
CT Scans, Mancos Shale, 23g XEH Charges
CT Scans, Mancos Shale, 23g XEH Charges
Conclusions – Design for Shale

- Perforating system design and technology is important for shale completion applications.
- The interaction of perforation geometry with near wellbore structures is relevant to well performance for many completions.
- Downhole geometry not easily established from cement penetration.
Design Methodology – Field Results

- 14 Wells completed by CNX between May 2008 and October 2009
- Chattanooga Shale
- 4-9 Fracture Stimulations
- Treatment Sizes
 - 15,000 to 30,000 gallons
 - 50,000 to 100,000 lbs. of proppant
- Stimulation and Production data for 81 stimulation stages
Field Results – Breakdown Pressure Red

Breakdown Pressure as % of Offset Average

Breakdown Pressure as % of Offset Average

- Conv A
- Conv A1
- Read A
- Conv B
- Conv B1
- Conv B2
- Read B
- Conv C
- Read C
- Conv D
- Read D

- 50%
- 75%
- 111%
Field Results – Treating Pressure Reduction
Field Results – Productivity Improvements
Field Results – Offset Comparison

- 4 Offset Groups
- 13% to 29% Reduction in Breakdown Pressure
- 6% to 15% Reduction in Treatment Pressure
- Improvement in Early Productivity Decline
Conclusions – Near Wellbore

- Perforating system design and technology is important for many completion applications.
- Overreliance upon cement penetration and penetration models has caused lost production.
- The interaction of perforation geometry with near wellbore structures is relevant to well performance for many completions.
Conclusions – Field Results

- Improvements reported confirm previously reported results. (SPE 116226, SPE 122174, SPE 125901)
- It is likely that future work could develop a perforating system which is better suited for shale fields.
Conclusions – Shaped Charge Design

- Shaped charges can be optimized for performance in different formations and applications.
- Shaped charge perforator design based upon targeted geometry improvements has been demonstrated to be effective in the lab and in the field for:
 - Sandstone, 1-300 mD
 - Sandstone, 300-1000 mD
 - Pre Frac Shale
 - Acidizing Applications
Thank you!

For more: SPE144167, SPE 116226, SPE 122174, SPE 125901

John Hardesty
Principal Research Engineer, GEODynamics, Inc.
john.hardesty@perf.com
Supporting Information
Permeability Map, Conventional Tunnel
Permeability Map, Conventional Tunnel
Permeability Map, Reactive Tunnel
Permeability Map, Reactive Tunnel

![Permeability Map Diagram]

- Sub-sample 1
- Sub-sample 2
- Sub-sample 3
- Sub-sample 4
Conclusions – Permeability Distribution

- Permeability distribution is complex – uniform thickness damage model may be inadequate.
- Permeability distribution is a feature of charge design, in addition to test/field conditions.
- This reactive charge design (25g HMX) shows overall improvement in side wall permeability compared to conventional charge.
Perforating Simplifications

“Perforating is much more complex than we wish it was.”

We want:

- Inexpensive and Repeatable Testing
- Simple Translation to Field Performance
- Predictive Software Models
- Simple Tunnel Geometry for Analysis
- Low Cost, High Performance
Perforating Simplifications

Testing Simplifications

- Unstressed Manufactured Target
- Translation to Field based on Stress Ratio

Consequences

- Charge Performance can Reverse
- Many Good Designs Overlooked
- OVERPREDICTION as we compete
Reversed Charge Performance

- Figure from SPE 27424, Ott, R.E. et al., “Simple Method Predicts Downhole Shaped-Charge Gun Performance.” Nov 1994
Industry Agreement – Over Prediction

- **SPE 124783** “Predicting Depth of Penetration of Downhole Perforators”, Gladkikh et al, Baker
- **SPE 125020** “A Survey of Industry Models for Perforator Performance: Suggestions for Improvement”, Behrmann et al, Schlumberger
- **SPE 127920** “New Predictive Model of Penetration Depth for Oilwell-Perforating Shaped Charges”, Harvey et al, Schlumberger

“The primary conclusions of this work include: (1) historical penetration models tend to over predict penetration at downhole penetrations ... partly due to the industry’s continued reliance on performance into surface targets.”

---SPE125020
Introduction • Reactive Perforating

Using reactive materials to enhance shaped charge effectiveness

- Case Material Unchanged
- Explosive Load Unchanged
- External Geometry Unchanged

Liner material modified to incorporate reactive materials
Reactive Perforating

- Designed for improved tunnel geometry
- Intermetallic reaction between charge liner materials, triggered by detonation pressure
- Exothermic reaction
 - Heats tunnel volume & near-tunnel pore space
 - Consumes supporting liner material
- Breaks up and expels debris from tunnel
- Effect occurs in each tunnel, independently
- Clean tunnels with less reliance on surge
Laboratory Evaluation

- More than 1,000 stressed rock test shots
 - “In the spirit of” API RP 19-B, Sections 2 & 4
- Sandstones, carbonates, others
- Wide range of stress states & configurations
- Comparative testing to conventional charges
- Evaluating:
 - Perforation geometry and clean-up
 - Relative flow performance (Section 4 type tests only)
Laboratory Evaluation • Example Results

<table>
<thead>
<tr>
<th>Charge</th>
<th>Rock</th>
<th>Effective Stress</th>
<th>UB</th>
<th>Δ Clear Tunnel</th>
<th>Δ Lab Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7g</td>
<td>11,000psi SSt</td>
<td>4,000psi</td>
<td>1500psi</td>
<td>+216%</td>
<td>n.a.</td>
</tr>
<tr>
<td>39g</td>
<td>11,000psi SSt</td>
<td>5,000psi</td>
<td>Balanced</td>
<td>+82%</td>
<td>n.a.</td>
</tr>
<tr>
<td>25g</td>
<td>5,000psi SSt</td>
<td>3,000psi</td>
<td>Balanced</td>
<td>+235%</td>
<td>+25%</td>
</tr>
<tr>
<td>25g</td>
<td>7,000psi SSt</td>
<td>4,000psi</td>
<td>500psi</td>
<td>+80%</td>
<td>+28%</td>
</tr>
<tr>
<td>6.8g</td>
<td>10,000psi SSt</td>
<td>4,000psi</td>
<td>Balanced</td>
<td>+35%</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Note of Caution: Lab tests are generally conservative. Significantly greater productivity improvements are being reported in the field.
Field Applications • Shoot and Produce

- Wells in which no stimulation is required
- Success = increased productivity
- Bonus = reduced cost, complexity, risk
 - Eliminate underbalance, release rig (TCP to W/L)

Examples:
- Thailand • +50% initial productivity based on performance of appraisal wells perforated with premium system
- Pakistan • 3x productivity of previous best-in-field well
- North Sea • Equivalent productivity with 1 run vs. 3 runs
Field Applications • Re-Perforation

- Generally a tough task for perforators
 - Effective stress increases as reservoir pressure drops
 - Hard to apply underbalance with open perforations etc.

- Success = increased productivity

- Examples:
 - **UK** • 30x productivity after re-perforation (best in field)
 - **USA** • 10x productivity ... more than 2x the increase seen re-perforating offset wells with conventional systems
 - **USA** • 10x increase in gas well production after re-perforation ... already shot twice with premium DP system
Field Applications • Prior to Stimulation

- Success = reduced pressure, increased rate, improved reliability
- Bonus = eliminate acid, avoid cleanouts
- Examples:
 - USA • 30-70% reduction in fracture initiation pressure (Barnett, Fayetteville, Marcellus...)
 - Canada • Reduced perforation friction, negligible tortuosity, eliminate need for acid spear
 - USA • 30% increase in initial productivity as result of 10% increase in treating rate at same pumping pressure
Field Applications • Limited Entry

- **Success** = consistent, predictable outflow area for injectant distribution along wellbore
- **Bonus** = eliminate rig-based breakdowns
- **Examples:**
 - **Canada** • Controlled EHD perforator for steam injection
 - **Oman** • Controlled EHD perforator under development for steam injection – assurance of clean tunnels will eliminate current practice of breaking down each set of holes using straddle packer assembly on drill pipe
Field Applications • Unconsolidated Rock

- **Success** = reduce TSS at same/higher rate due to greater number of open tunnels and reduced flux rate

- **Example:**
 - **Oman** • Well produced 2x gross liquids of comparable offsets (unfortunately mostly water...) but only 10% of the field average sand rate