The Impact of Perforating on Hydraulic Fracture Initiation in highly stress tough rock – a case study

China International Perforating Symposium
Oct 15-17

Mukmin, Latifa Qobi, Qu Qing Guang, Julius Bamgbose, Mike Pickles
Shell China Exploration and Production Company
OUTLINE

- Asset overview
- Completion Strategy
- Challenges, Causes
- Remedial Plan and Result
- Perforation methods comparison
- Conclusion
Country: China

Objective: To appraise BCG Play concept and assess productivity

Appraising & Exploring using 9 vertical wells
—Reservoir depth: 3500-4700 m
—Multiple targets of sandstone and carbonate formation
—Very tight formation: 0.002-0.05 mD
—High pore pressure: 17-23 kpa/m (0.75-1.01 psi/ft)
—High stress: Mixed reverse fault / Strike slip
—High rock strength: YM 30-65 Gpa
Completion Strategy

- Fracturing using plug & perforation
 - 5 stages per well
 - Using heavy brine CaCl2
 - Max. pump pressure 14,200 psi
 - Initially, using limited entry perforation of 3 or 4 x 1 m interval w/ 10-12 shots/m
 - HCl and 100 mesh proppant
 - Hybrid slick water & gel frac
 - Intermediate proppant strength

- Pressure up 5-10 cycles for breakdown.
 - If fail to breakdown/ establish rate, add perforation
Perforation Strategy

- Limited entry perforation of 3 or 4 cluster of 1 m with spacing 5-10 m
 — To connect the clusters and create longer frac height
- Perforating gun, 2 7/8”, 18 g HMX, 60 deg phasing, 10-12 shot/m
 — 0.28” entrance diameter, 26” (660 mm)

<table>
<thead>
<tr>
<th>Test</th>
<th>EHD (mm)</th>
<th>Penetration (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>7.3x7.1</td>
<td>691</td>
</tr>
<tr>
<td>#2</td>
<td>7.4x7.2</td>
<td>696</td>
</tr>
<tr>
<td>#3</td>
<td>7.6x7.3</td>
<td>671</td>
</tr>
<tr>
<td>Average</td>
<td>7.3</td>
<td>686</td>
</tr>
</tbody>
</table>
Challenges, Causes and Remediation

- Key challenges in first 3 wells (17 stages)
 - Fail to break-down formation (4 stages)
 - Not enough rate to continue w/ proppant fracturing (3 stages)
 - Only 1 dominant cluster and limited height

- Potential Causes
 - Tough, high rock stresses and high pressure
 - Deep formation
 - Near wellbore damage due to perforation/ drilling

- Several remediation measures
 - Select less tougher rock (< 48 Gpa)
 - Increase max. pump pressure
 - Use heavier brine
 - Spot acid to remove near wellbore damage
 - Open hole completion
 - Change perforating strategy (0 degree phasing, long perforation interval, sand jetting & Reactive charge)
1. Reactive Charge, depth 4496-4499.6 m, 36 holes, 0.37 EHD, 60 degree phasing. Trialed 5 pumping cycle, no breakdown at pump limit 14,800 psi (1.58 psi/ft).

2. Casing gun, depth 4490-4495 m, 4496-4500, 11 holes/m, 0.28 EHD, 60 degree phasing. Trialed 11 pumping cycles, no breakdown at pump limit 14,800 psi (1.58 psi/ft)

3. Sand jetting, depth 4487-4496 m, 8 holes/m, 0.37 EHD, 60 degree phasing. BD gradient: 1.44 psi/ft
BREAKDOWN GRADIENT of ALL ATTEMPS

High BD Gradient besides
- Loss & Gain
- Porous sand

Some very high BD pressure when perforation using LEP
1. Sand Jetting has lower BD Gradient vs Reactive Charge at same sand

2. Sand Jetting BD the formation that was fail by Long perforation & Reactive Charge

3. LEP, Long Perforation & Sand Jetting were fail.

4. Spot acid across perforation reduce the BD gradient & increase the rate to allow proppant frac
Success ratios of formation breakdown of Limited entry perforation and long interval perforation are similar (13/24 vs 8/15)

Some unexpected fail to breakdown in LEP that may be caused
Conclusion

- Mother nature of the formation play the key role in breaking down the formation
 - Breakdown is not an issue in Fractured tight and porous sand intervals
 - Besides the above features, breakdown gradients are mostly high in the range of 1.37-175 psi/ft.
 - Breakdown issues were predominantly encountered in the tight Xu2 SSt and the Xu4 Conglomerates

- Compare to LEP, Longer perforation ensures that the target interval is perforated to compensate the perforation, logging and drilling depth accuracy

- Limited entry 60 degree phasing shows slightly better breaking down formation compare to 0 degree phasing, possibly due to the lower tortuosity

- Reactive charge shows mixed success (1 success and 1 fail) and so far showed worse than Sand Jetting

- Encouraging result from Sand jetting by breaking down unbroken trials by other perforations but still encountered some failure to propagate the fracture/establish rate. Need to combine with acid to remove near wellbore damage in certain type of formation or well condition.