Perforating Design for HTHP Completion: Rigorous Testing to Maximize Well Productivity

SPE 159920
Optimized Cased and Perforated Completion Designs Through The Use of API RP-19B Laboratory Testing to Maximize Well Productivity

Alex Procyk, ConocoPhillips, David Atwood, Schlumberger

Presented at the 2012 International Perforating Symposium
Amsterdam
Nov 8-9, 2012
Typical Field Characteristics

- Retrograde gas condensate
- Initial reservoir pressure ~ 11000-12000 psi
- ~ 14,000 ft TVDSS
- 350-375°F - HNS
- Sandstone - Relatively high rock strength
- 20-30 mD Permeability
Proposed Well Configuration

Cased & Perforated Completion
Why are we looking into the perforating process so closely?…..

……A real world example from a similar field, with similar completion design and similar conditions
Initial Perf job:
- Perforated 1000 psi overbalanced in oil based mud
- Poor Well Response from first perf Job Compared to Benchmark well perforated underbalanced

Reperf Job:
- 3 years after first perf job
- UB (live well)
- During the perforating operations the shut-in tubing pressure increased from 3,649 to 5,001 psi.
Perforating Design Goal

- Design perfs to achieve desired skin, the first time!
- Get full production across entire perforated zone
Perforating Requirements

Perforation Geometry:
- Density
- Phasing
- Diameter
- Length

Perforation Damage:
- Perforation Fill
- Crushed Zone Permeability
Perforating Requirements

What perforation length do we need?
WHAT PERFORATION LENGTH DO WE NEED?

Evaluation of Perforation Geometry and Damage Effects

$K_h=10\; md,\; K_h/K_v=1,\; H=500\; ft\; TVT,\; b=H_p/H=1,\; Incl=0\; deg,\; K_mf/K_r=0.5,\; r_mf=r_w+1\; ft\; and\; r_w=0.354\; ft\; for\; all\; cases$

Increasing perforation length provides more skin improvement than increasing shot density

$5''\; L_p: 12\; spf/6\; spf = 1,\; 5''/10'' = 1.5$
Core Penetration Length Variability

2-7/8" gun, 4500 psi UCS rock strength, 7150 psi apparent effective stress

Core Penetration Length (in.)

- Test: Rock Penetration
- Prediction: Rock Penetration
- Section 1: Concrete Penetration

Beware!
Perforating Requirements

What perforation conditions do we need?

How should we perforate?

• Overbalanced
• Underbalanced
• In Mud?
• In Brine?
Perforating Damage—Performance

Poor skin
- Reduced permeability crushed zone, K_c
- Dmg depth, Damaged zone, K_d
- Undamaged formation, K
- Sand debris

Fair skin
- Dmg depth, Damaged zone, K_d
- Undamaged formation, K
- Sand debris

Good skin
- Dmg depth, Damaged zone, K_d
- Undamaged formation, K
Perforation Design: Competing Interests

Best Practice for Completions
- Perforate Underbalanced in filtered brine
- Run as large guns as possible – 3.5”

Best Practice for Operations
- Perforate overbalanced in mud
- Run 2-7/8” gun

Can the Two Competing Interests meet?
Test all Scenarios

1. Flow Tests (skin):
 - Underbalanced
 - Static underbalance: 1500 psi
 - Dynamic underbalance: 3500 psi
 - Overbalanced
 - 500 psi
 - In mud (per fluid)
 - In base oil
 - 3-1/8” gun

2. Penetration Tests (length)
 - 2-7/8” gun
 - 3-1/8” gun
1. Flow Test

“Section 4”
Crushed Zone Permeability Measurement

- Undamaged Permeability Parallel to Bedding Planes, K
- Crushed Zone Thickness
- Crushed Zone Permeability, Kc
- Total Perforation Length
- 7”
Section 4 test not rated for actual conditions

Confinement: 5800 psia (13000 psia)

Pore Pressure: 4500 psia (11700 psia)

Wellbore Pressure: 3000-5000 psia

Temperature: 200°F (350°F)

Core Fluid: Mineral Spirits (condensate)
Test Scenarios

Scenario A: Shoot overbalanced with mud, no DUB, kill

Scenario B: Shoot overbalanced with mud, 3500 psi DUB, kill

Scenario C: Shoot 1500 psi underbalanced in base oil, no DUB

Scenario D: Shoot balanced in base oil, 3500 psi DUB

<table>
<thead>
<tr>
<th>Number of Perforation Tests</th>
<th>Type of Fluid in Wellbore</th>
<th>Static Wellbore Pressure Prior to Perforating</th>
<th>Dynamic Underbalance Applied During Test</th>
<th>Post-Perforation Well Kill Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tests</td>
<td>16.5 ppg OBM</td>
<td>500 psi Overbalance</td>
<td>3500 psi Dynamic Underbalance</td>
<td>Kill with OBM/Hold for 72 hrs</td>
</tr>
<tr>
<td>2 Tests</td>
<td>7.0 ppg Base Oil</td>
<td>50 psi Underbalance</td>
<td>3500 psi Dynamic Underbalance</td>
<td>Kill with Base Oil/No Hold</td>
</tr>
<tr>
<td>1 Test</td>
<td>7.0 ppg Base Oil</td>
<td>1500 psi Underbalance</td>
<td>No Dynamic Underbalance</td>
<td>Kill with Base Oil/No Hold</td>
</tr>
<tr>
<td>1 Test</td>
<td>16.5 ppg OBM</td>
<td>500 psi Overbalance</td>
<td>No Dynamic Underbalance</td>
<td>Kill with OBM/Hold for 72 hrs</td>
</tr>
</tbody>
</table>
Test 6: Mud, 500 psi Static Overbalance, no Dynamic Underbalance, OBM Kill
SECTION 4 TEST PROGRAM RESULTS

Test 4: Mud, 500 psi Static Overbalance, 3500 psi Dynamic Underbalance, OBM Kill
Test 3: Base Oil, 1500 psi Static Underbalance, no Dynamic Underbalance, Base Oil kill
SECTION 4 TEST PROGRAM RESULTS

Test 5: Base Oil, 50 PSI Underbalanced, Dynamic Underbalance, Base Oil kill
SECTION 4 TEST PROGRAM RESULTS

CFE Comparison

- Test 1: 500 psi SOB, 3500 psi DUB, Mud
- Test 2: 50 psi SUB, 3500 psi DUB, Base oil
- Test 3: 1500 psi SUB, no DUB, base oil (test 2 repeat)
- Test 4: 50 psi SOB, 3500 psi DUB, mud (repeat test 1)
- Test 5: 50 psi OB, no SUB, No DUB, mud

Legend:
- Red: No underbalance
- Blue: 1500 psi SUB
- Green: 3500 psi DUB

CFE

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
Kc/K Summary

Crush zone thickness = \(r_{\text{scrubbed}} - r_{\text{jet}}; d_{\text{jet}} = 0.15" \)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Kc/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 6</td>
<td>500 psi OB, no SUB, No DUB, mud</td>
<td>0.00</td>
</tr>
<tr>
<td>Test 3</td>
<td>1500 psi SUB, no DUB, base oil</td>
<td>0.20</td>
</tr>
<tr>
<td>Test 5</td>
<td>50 psi SUB, 3500 psi DUB, base oil (test 2 repeat)</td>
<td>0.30</td>
</tr>
<tr>
<td>Test 4</td>
<td>500 psi SOB, 3500 psi DUB, mud (repeat test 1)</td>
<td>0.50</td>
</tr>
<tr>
<td>Test 2</td>
<td>50 psi SUB, 3500 psi DUB, Base oil</td>
<td>0.40</td>
</tr>
<tr>
<td>Test 1</td>
<td>500 psi SOB, 3500 psi DUB, Mud</td>
<td>0.70</td>
</tr>
</tbody>
</table>

- Red: no underbalance
- Blue: 1500 psi SUB
- Green: 3500 psi DUB

Notes:
- Crush zone thickness is calculated as the difference between the scrubbed radius \(r_{\text{scrubbed}} \) and the jetted radius \(r_{\text{jet}} \).
- The jet thickness \(d_{\text{jet}} \) is 0.15".
Flow Results

- Perforating in mud without underbalance very bad
 no surprise

- Dynamic underbalance most important
 moderate surprise

- Perforating and killing in mud with dynamic underbalance is OK
 Surprise to us!

Round 1 to Operations
2. Core Penetration Tests
Confirm Actual Penetration with Testing

- Perform tests at realistic conditions
- Compare against predictions
- Select deepest penetrating charge
Pore Pressure: 11700 psi

Confinement pressure: 13000 psi

Wellbore pressure: 12000 psi

Temperature: 350° F

Net stress: 1300 psi

Apparent net stress: ~9000 psi
Perf Length – High Expectations

Predicted Formation Penetration
2-7/8” and 3-1/8” Guns

Rock UCS = 7000 psi

Expected apparent net stress

Apparent Net Stress = \(\sigma_c - \alpha P_p \)
Perforation Created By 23 g HNS Charge At HPHT Conditions
TEST 6: Mud, 500 psi Static Overbalance, no Dynamic Underbalance, OBM Kill

Apparent net stress = 4400 psi
Perforation Created By 19 g HNS Charge At HPHT Conditions
Post Shot - Perf Test Photo's

- Test Core 2B = 6.75 inch
- Test Core 3T = 5.2 inch
- Test Core 4B = 6.38 inch
- Test Core 5T = 6.56 inch
- Test Core 6B = 4.6 inch
- Test Core 7T = 5.81 inch
Core Penetration: Predicted vs. Actual

2-7/8" gun, 4500 psi UCS rock strength, 7150 psi apparent net stress

Company

A

A

B

B

C

C

Core Penetration (in.)

- Solid: Predicted
- Shaded: Actual
Skin Evaluation Incorporating Section-2 and Section-4 Test Results

- Initial Screening Case: SPF=6, Dp=0.25", Phasing=60 deg and Kc/K=0.4 for UB Perforating with Kmf=0.50
- Modified Screening Case: SPF=6, Dp=0.25", Phasing=60 deg and Kc/K=0.4 for UB Best Practices with Kmf=0.75
- Design Case with Section-2 and Section-4 Results: SPF=6, Dp=0.85", Phasing=60 deg and Kc/K=0.4 for DUB with Kmf=0.75
- Best Laboratory Test Case: SPF=6, Dp=0.85", Phasing=60 deg and Kc/K=0.7 for DUB with Kmf=0.75

Initial Skin = +1.9 with Lp=12" and Dp=0.25"
Final Skin = +1.0 with Lp=6.75" and Dp=0.85"

Expected skin @ 12" penetration, 0.25" diameter

Perf Geometry much different than expected, but yields roughly the same skin due to huge diameter (= flow area)
Some things to think about

- Perforation characteristics: “Carrot Shape” (Short & Dumpy) –
 - Is this an HNS artifact?
 - What effect does the saturating fluid play?
 - Is the carrot shape indicative to the lower rock strength only. What happens in higher rock strength?

Is Short and Fat still acceptable with a low perm mud filtrate invaded zone?
Pushing Testing Further

• How do we encourage the industry to cut larger ID core in actual HPHT rock to advance testing further..........(UK & Norway) are the main user of this HPHT perf technology..

• How do we improve analogue rock selection, is synthetic rock a option? where are we with this technology?

• Testing in Brine. Tests resulted in vastly improved penetration. "Reality" future testing requires accurate saturation of the core to demonstrate if improvement associated with rock saturation.
Gun design for 2 7/8” HPHT Guns (Central Grabben Type Formation use 2 7/8” due to 5” Tubing /Liners) has **probably** reached its limit. There has to be quantum leap in technology to make any difference and this does not seem to be available today.

DUB: Cannot actually measure the event in real time due to limitations of gauge technology (temp) both in the lab and in the field.
Acknowledgements / Thank You / Questions

The authors wish to thank the management of both ConocoPhillips Company and Schlumberger for permission to publish this work. The authors also wish to thank the PERF Lab engineers and technicians involved in this work for their diligence in performing these tests to ensure meaningful and consistent test results.
Perf Length Test Results

- Charges shot shorter than expected in HPHT Tests
- Charges had larger perforation diameters in HPHT Tests
- 3-1/8” did not shoot significantly deeper than 2-7/8”, at least settling that argument
Perf Length Test Results

- Charges shot shorter than expected in HPHT Tests
- Charges had larger perforation diameters in HPHT Tests
- Perf Geometry depended upon saturating fluid (OMS vs brine)
- 3-1/8” did not shoot significantly deeper than 2-7/8”, at least settling that argument
- DUB and perf geometry should be sufficient for our skin goals (stay tuned)
Length vs Total Skin
Well 3

Initial Perf job:
- Perforated overbalanced in oil based mud
- Poor Well Response from first perf Job Compared to Benchmark well perforated underbalanced

Reperf Job:
- 3 years after first perf job
- UB (live well)
Well 4 Backpressure Plot

- 2002-2005 Production Data
- 2006-2007 Production Data
- 2008-2009 Production Data
- 2010-2011 Production Data
- Data in IPR Graph
- Production model

Original Completion

After Reperf

P*2 - Pwf*2 (psia^2)

Rate (mmscf/d)
Well 3 Backpressure Plot

- Original Completion
- After Reperf

Rate (mmcf/d)

$P^*^2 - P_{wf}^2$ (psia^2)

- 2002-2004
- 2005-2006
- 2007-2009
- 2010

Data in PR Graph

Production Model, $S = 12.5$