Deepwater West Africa Passive Sand Control using Oriented Perforating

Cole White
Technical Advisor TCP
Angola
Life Cycle Cost
Orientation Failures - OTC 19130

- Deviations from recommended design
- Challenging well parameters
- Poor operational practices.
- A few cases the causes of poor orientation accuracy remain unresolved.
Asset Effects
Effects on Production

Production OTC 19130 Phased vs. Oriented Perforating
Sand Control - Active vs. Passive

- Base pipe
- Proppant
- Conductivity Enhancement
- Bypass

$\Delta$ $2-3$ Million Completion cost
Increasing the Reliability
Transferrable Solutions

- Guaranteed flow assurance with a rate of 6,000 m$^3$/day (37,600 BOPD)
- 20 percent increase in Norne Field production
Adapted to Angola Requirements

- 9 5/8 Casing,
- Permanent Completion
- Gyro Elimination
- Well Integrity
- Dynamic Underbalance
- Operational savings of 50 Hours
- 6 wells on production – no additional sand accumulation
- “We have not seen evidence of continuous sand production on the wells even with 70% water cut.”
Client Value Added

- “An Estimated 36 hours of rig time has been eliminated, since it is no longer necessary to have the orientation of the guns verified by a Gyro, and the overall perforating interval can be increased to enable one run in the hole…. cost savings of $1,462,500 USD .”
Adapted to Angola Requirements

- North Sea Operator Primary completion in 7” casing
- Shallow Gas Zone in 9 5/8 Discovered
- Used 7” Internally oriented system to capture additional production
Summary

What questions does oriented perforating need to answer for you?