An Application of Reactive Charge Technology to High Strength Formation and High Overbalance Environments: Charge Design and Operational Challenges

EWAPS-12-2

Paul Lynch – GeoKey Ltd.
David Cockram – Tullow Oil PLC
John Hardesty – GEODynamics Inc.
Agenda

• Challenges Facing Schooner Field
• Testing Criteria
• Test Results
• Test Conclusions
• Proposed Way Forward
• Proposed Field Deployment
Schooner Field

- Schooner Field discovered in 1987
- Developed in the mid 1990’s
- Carboniferous Schooner Formation
- Fluvial deltaic channel sandstones
- Initial reservoir pressure 6,564 psia
- Hydrocarbon 51° API Condensate
Challenges of Schooner Field

- Reservoir Pressure - 2,900 psia
- Maximum Overbalance - 3,500 psi
- Rock strength Max UCS - 22,000 psi
- Permeability Min - 1 mD
Test Criteria

• Rock selection to match Schooner
 • Identify rock targets to match
 • Permeability - 10mD
 • Porosity – 11%
 • Rock Strength - 18,000 - 22,500psi

• Preliminary Testing
 • Permeability - 2.7 mD
 • Porosity - 5.1%
 • Rock strength (UCS) - 17,000psi

• Actual Test Cores
 • Permeability - 0.29mD
 • Average porosity - 6.55%
Test Criteria

• **Charge Type Selection**
 • 4 ½” Gun type with either 23g or 39g system
 • Conventional and Reactive Deep Penetrating charge types

• **Test Conditions to Match Schooner**
 • Pore pressure 2,900 psi
 • Overburden 12,500psi
 • Wellbore pressure 6,400 psi
 • Overbalance 3,500 psi
Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Charge</th>
<th>PR</th>
<th>I Perm</th>
<th>Penetration</th>
<th>Clear</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP 01</td>
<td>39g Conventional</td>
<td>1.271</td>
<td>0.338</td>
<td>8.900</td>
<td>3.800</td>
</tr>
<tr>
<td>TSP 02</td>
<td>23g Reactive</td>
<td>0.977</td>
<td>0.433</td>
<td>7.000</td>
<td>5.000</td>
</tr>
<tr>
<td>TSP 03</td>
<td>39g Reactive</td>
<td>1.245</td>
<td>0.272</td>
<td>8.200</td>
<td>6.500</td>
</tr>
<tr>
<td>TSP 04</td>
<td>39g Reactive</td>
<td>0.680</td>
<td>0.443</td>
<td>9.600</td>
<td>5.500</td>
</tr>
<tr>
<td>TSP 05</td>
<td>39g Reactive</td>
<td>1.285</td>
<td>0.119</td>
<td>8.200</td>
<td>6.000</td>
</tr>
</tbody>
</table>
Test Results

- Difficulty in examining targets due to fracturing occurring when stresses relieved.
- Plugging existed in all tunnels to some degree
- Inflow performance did not correlate to clear tunnel length.
Test Results

- Inhomogeneity in target cores affected:
 - Total Depth of Penetration
 - Post perforation flow results
Test Results

• Reactive tunnels appeared to have circumferential fracture along the tunnel length.
• Fracturing found at the end of the reactive tunnels
Test Conclusions

• CT Scanning Recommended for future testing.
• Limit on performance of all charges
• Limits of reactive clean up with high level of overbalance.
• Reactive charges did still yield better clear tunnel.
• Radial Flow testing more appropriate?
• Streamline testing?
Proposed Way Forward

• Utilise 4 ½” 39g Gun system to perforate the well.
• Utilise Reactive charges
• Utilise a Perf Pill -
• Conduct Shoot and Pull Operation Pre completion
Proposed Improvement Considerations

• Reduction in level of overbalance?
• Underbalance?
 • Static
 • Dynamic
• Employ additional stimulation?
 • Propellant Stimulation
 • Hydraulic Fracturing
 • Acidisation
Questions