Well Completion Design for a Subsea Infill Oil Producer

John Mason, November 2012
Presentation

• Field and Well Context
• Well Uncertainties
• Operational limitations
• Sandstone Perforating
• Chalk Perforating
• Managing well design uncertainty
• Conclusions
Field Context

- North Sea Mature Oil field...
- 85m water depth
- Normal P,T & PVT
- Subsea development
- Salt Diapir
- High dip angles
- Rotated Stress fields
- Chalk & sandstone
- Cemented liners
- Acid-fracced chalk
- Historical PI’s of 5-150
Well Context

- Spud Nov 2012
- Small semi-submersible
- ~63º deviation
- 250m chalk
- 250m sand
Well Uncertainties

- Reservoir pressures 2680 – 4114 psia at 2000m TVDss
 - 0.95 to 1.45 SG
 - Unknown *differential* depletion across the reservoir section
- Unknown Water saturations in the Palaeocene Sandstone
 - Perforating interval from 0m (if fully swept) to 250m (unswept)
- Weak rock strength in the Sandstone
 - sanding risks
- Natural fracturing in the chalk
 - minimal or moderate
- 5 ½” cemented liner
 - 4 ½” contingent liner
Operational Limitations

- Small 3rd generation semi-submersible rig
- November 2012 spud – winter completion operations
- Subsea flowline installation summer 2013
- Multiple completion scenarios for acid frac + sandstone perforating + flowback
- August 2012 – Internal Peer Review
 - Unable to operate well test spread + CT spread + acid fracturing
 - no rig well testing
 - acid frac only if flow-back through subsea facilities is acceptable
Sandstone Perforating

- Weak sand – sand production risks
 - Rotated Stress field negates the value of oriented perfs
 - Perforation phasing to maximise perforation spacing
 - Field evidence for benefits of increased perf spacing
- TCP for 150+ metres
 - Dynamic underbalance, static overbalance with clean brine
 - Sized carbonate pill vs. viscous pill to stem losses
 - Liner plug above perfs being evaluated
- Wireline perforating for <150m
 - 70metres 2 7/8” guns 2-32 e line, addressable weak point
 - Unable to pull mechanical weak point – is this acceptable?
 - Run through flowhead means working at height
 - Selective perforating with addressable firing heads
- 3 3/8” vs. 2 7/8” guns - performance vs. operational flexibility
- Use the same service company for TCP and wireline?
- Slickline supplier also has double drum units with 2-23 e line
Chalk Perforating & Stimulation

- Acid frac design for two scenarios
 - Numerous natural fractures – mud solids removal
 - Few natural fractures – viscous diverting acid
- Acid frac only if sandstone interval is water-swept
- Frac boat availability and planning for ‘contingent frac’
- 5 ½” tubing string needed for frac through completion
- **Limited entry wireline perforating**, selective multiple intervals
- Engineered perforation EHD – shoot-out to assess parameters
- Biodegradable ball sealers depend on controlled EHD
- Gun centralisation for consistent EHD
Managing Well Design Uncertainty

- Focus on 2 7/8” phased carrier guns
 - Dynamic underbalance
 - Eline tension modelling
 - Same guns for TCP or eline
- Prefer to work with one perforating service company
 - Reduced interfaces
 - Better control of work planning
- NaBr brine to cover wide range of formation pressures
 - PON-15b chemical use and discharge permitting
- Evaluate well barriers for marine riser disconnect
- Bleed-off package for eline perforating
- Rigorous risk assessment and mitigation planning
 - Compensator lock-up
Conclusions

- Small rig in winter increases operational risks such as riser disconnect
- Large reservoir uncertainty increases the possible well outcomes
- Key decisions are needed to frame the project around do-ability
- Reduce the variables for sandstone and acid frac perforating
- Decision on TCP, e-line or acid frac according to well results
- Real-time supplier response to meet operational demands
- Small team with focus and continuity