

Charge testing for well concept selection

November 2012

Eelco Bakker, Al Zanimonsky, NAM

Mark Brinsden, Shell

EWAPS 12 - 6

Presented at 1st European & W African Perforating Symposium, Amsterdam 7 – 9 November 2012

content

- Well concept evolution
- Case for charge testing
- Test set-up / test conditions
- Charge test results
- Findings charge testing
- Impact concepts
- Conclusions and way forward

Well concept evolution

- Netherlands / Southern UK sector scene setting
 - Mature area, remaining gas/oil accumulations small size (0.2 1
 BCM)
 - Early 2000's: "step change" in costs required
- Significant changes (down sizing) required in well design, rig selection, well functionality and surface lay-out in order to meet challenge

Well concept evolution – 1st step

Well concept evolution – the next step?

Slim well concept – impact gun size (base modelling)

Test set-up / test conditions

Field conditions

Charge testing conditions in lab

Overburden = approx 9200 psi (634 bar)

reservoir UCS = 1000 - 2000 psi (70 - 140 bar)

Res Pressure = 4350 - 5000 psi (180 - 350 bar) In order to mimic field conditions as good as possible selected the following parameters:

- Carbon Tan material (sandstone)
- ➤ internal / confining stress
- ➤ Section 2 only, no flow conditions
- ➤ Various combinations OH size / tbg — and charge size
 - Varying cement thickness

Charge test results 2" charge

- Carried out some 33 tests (3 labs, test data randomly plotted !!)
- Tests in 7" and 4" Carbon Tan cores, both centralised / excentralised.
- In some tests free gun volume (FGV) reduced to minimise effect DUB (dyn underbalance)

Charge test results small charge

- Carried out some 17 tests (3 labs, test data randomly plotted !!)
- Tests in 7" and 4" Carbon Tan cores, both centralised / excentralised.
- In some tests FGV reduced to minimise effect DUB

Findings charge testing (1)

- Futher analysis of results
 - Impact cement thickness clearly seen in majority of tests (6" vs 4 7/8" OH, 4 7/8" vs 3 15/16" OH)

Findings charge testing (2)

- Futher analysis of results
 - Centralisation / stand-off impact: significant and hence to be included, not directly included in original modeling
 - Overall "perforation efficiency" (OH tunnel length/TCP tunnel length) from tests some 80%, hence efficiency for actual field conditions lower (less optimal conditions for dyn UB) → tentatively set @ 50%

DoP 2" charge				
	vertical	deviated	Used for original modeling	
6" OH	9"	7.7"	7"	
4 7/8" OH	11"	9.6"		
EH	0.19"	0.17"	0.22"	
Eff, %	50	50	80	

Small charge				
	vertical	deviated	Used for original modeling	
4 7/8" OH	2.9"	2.4"	4"	
3 15/16" OH	5.1"	4.3"		
EH	0.17"	0.17"	0.17"	
Eff, %	50	50	80	

Impact charge testing on well concept selection

Impact 2" charge:

- test results impact rel. minor
- Higher DoP offset by lower assumed perforation eff.

Impact small charge:

- impact clear
- Lower DoP + lower assumed perforation eff.

"Economics": Impact charge testing on well concept

selection

2" charge Minor Impact

Conclusions

- Charge testing results
 - Reducing tubing size to 2 7/8" and using smaller charges not attractive given loss of inflow / recovery → this concept no longer pursued!!
 - Impact perf tunnel efficiency significant
 - Impact cement thickness for smaller charges potentially underestimated
 - potential impact on selected drilling practices (OH drilling diameter)
 - Perforation tunnel efficiency possibly overestimated in original modelling
 - "ideal" lab tests gave results of approx 80%, field conditions (small clearance, low static UB) far from ideal.
- Way forward
 - Carry out gun survival tests for 2" guns inside 2 1/10 1401119 / 11

