Charge testing for frac operations optimisation

Eelco Bakker, Bart Pestman NAM
Mark Brinsden Shell

IPS12-34
Presented at International Perforating Symposium, Houston 26 – 27 April 2012
Content

- Case for charge testing
- DoP / EH framing
- Test set-up / test conditions
- Charge test results
- Impact test results on operational decisions
Case for charge testing for fraccing operations

- Re-vitalised MHF (massive hydraulic fracturing) in NL/Southern UK sector, no operations since end ‘90’s/early 20’s.
- No of jobs offshore, rig- & stimulation vessel assisted, high cost environment. Typical (indicative) cost levels:
 - rig rate (spread): $200k – 300k/day
 - Stimulation vessel: $50,000 – 100,000/day
 - Single frac operation, typical 5 – 10 days $3-5 mln
 - Multiple frac operation $30 days, $12 - 15 mln
- New wells to be fracced
 - 3 ½” cemented completions
 - E-line perforating vs CT jetting
- Additional operational “boundary conditions”
 - Rig logistics

⇒ Optimise operations wherever possible !!
Area for CT / lubricator rig-up

Area for test equipment

Limited deck space / small footprint with difficult logistical issues
In moderate hard or hard formations, shape charges create a radial, high-stress zone of damage (the “stress-cage”) around the perforation tunnel. Less penetration (BH charges) will result in a large stress-cage diameter. DP charges also create a stress-cage. However, as the gun energy is divided over a longer tunnel, the resulting diameter of the stress cage is much smaller zone. Local de-bonding of cement around perforation could also result that hydraulic fracture will form. Optimal connection to reservoir will reduce/eliminate...
Some criteria for optimum reservoir connection

- Minimum EHD criteria: fixed $6 \times \text{max D} / 7 \times \text{avg D}$ (used in Shell / Industry) or variable pending proppant concentration.

Minimum Perforation EHD (in) to prevent bridging:

- No fixed / established criteria for DoP
 - Reduce or preferably eliminate crushed zone.
Jetting

- Primary feature: undamaged, non-stressed perf tunnel

Typical jetting design parameters

- Fluid with 100 mesh sand pumped down 2 3/8”CT, 3 nozzles, 120 deg phasing, pump rate 300 ltr/min, abrasive slurry contains 1 ppa sand in 20cp gel.

Results 14 mins jetting

Courtesy Halliburton, SPE105064
Some criteria for optimum reservoir connection (literature etc)

- Requirements for fraccing – length / type of perforations or entrance holes
- Rules of thumb prevail – “to be placed where they are needed most”
 - Vertical wells
 - < 15 degrees → perforate 15 – 25 m
 - > 15 degrees → 1 – 3 m
 - perforate short interval at the top of the zone only in order to minimise chance of fraccing into the water leg (worse for depleted wells)
 - Some extremes : 70 – 100 shots / interval (no interval thickness specified – SPE 38630) versus 1 shot every 6 feet
 - Phasing 60 deg
 - Horizontal wells
 - Transverse fracs → 0.5 m
 - Longitudinal frac → 1 – 3 m
 - No of perforations to be limited to reduce multiple fractures, 12 – 15 would suffice (2spf)?.
 - Phasing 60 – 120 deg
In order to mimic field conditions as good as possible selected the following parameters:

- Carbon Tan material (sandstone)
- Internal / confining stress
- Section 2 only, no flow conditions
- Representative tbg (3 ½”) and 6” OH = “worst” condition
Carried out some 8 tests (3 labs, test data randomly plotted !!)

Tests in 7” and 4” Carbon Tan cores, both centralised / excentralised.
Impact test results on operational decisions

Test results

- Pre-frac options: no showstoppers for either jetting or perforating
- Other factors drive operational decisions
 - Jetting: clearance 1 ¾” CT in 3 ½” tubing.
 - Other operations prior to frac:
 - logging, bridge plug setting, sand clean-out to required depth for next frac etc etc.

Current proposal

- E-line perforating of bottom zones / set plugs
- After 1st frac: CT clean-up / jetting subsequent zones
- testing potentially saved significant $$/s by optimising rig ups/downs