Laboratory Perforation and Flow Testing
Using Reservoir Wellcore

Brenden Grove, Schlumberger
Chris Chow, ProDuce Consulting

May 14, 2014
Agenda

• Brief intro to the perforating laboratory
• Overview of “typical” test programs
• Survey of programs based on actual reservoir wellcores
Perforating Laboratory: Brief Introduction

- Originated in 1953
- Fundamental and targeted studies
- Perforation depth, cleanup
- Well productivity, skin, perf for stimulation / SC
Perforating Objective: establish a highly productive flowpath between reservoir and wellbore
Perforating...Field to Lab
Perforating Test Programs: High Level Drivers

Field Objectives
Maximize / Quantify:
- Well productivity
- Well inflow reliability over the long term
- Operational & rigsite efficiency
- Operational & rigsite safety

Lab Objectives
- Match critical **shot-time conditions**
  - Wellbore fluids, dynamics for perf cleanup
  - Pore fluid, and core boundary conditions
- Match **flow conditions**
  - Fluid, field rates
  - Assess flow efficiency (→well skin, PI); sanding propensity, etc.
- Investigate range of **wellbore fluid / reservoir interactions** on full size core
  - Stimulation – eg acidizing
  - Sand consolidation treatments
  - Well control: Non-damaging loss control fluids while perforating

IPS-14-16
Laboratory Programs Using Reservoir Cores

- Off & on since mid 1990’s
- Advantages & disadvantages
- Survey of recent programs
Advantages & Disadvantages

Advantages
The “real thing” – strength, porosity, permeability, heterogeneities
Often no surrogate outcrop exists that matches all properties
Most reliable indicator of actual formation response to perforating
Especially suited to chemical/interaction phenomena (completion fluid interactions; production flow watercut, etc.)

Disadvantages
Limited sizes; requires additional fixturing, scaling
Heterogeneities (not really a “disadvantage”?)

Other considerations
Coring orientation often in the “wrong direction”
Cores often already picked over / slabbed / plugged
Limited supply
Interpretation is key for field (design, implement, produce)

Awareness
Is completion/perforation strategy always considered early in well’s life, when cores are taken?
Typically fit into one of 3 main categories:

A. Shaped charge penetration depth
B. Perforation depth, cleanup, inflow performance
C. Perforation stability / Sanding propensity over life of well scenarios (depletion stress, watercut)
A. Wellcore Penetration Programs

3 examples
1. Sandstone – ultrastrong / heterogeneous
2. Coal – shallow, weak, naturally fractured
3. Carbonates – moderate and high strength
Wellcore Penetration Example #1

Sandstone – ultrastrong / heterogeneous

- Driver: hydraulic frac environment; formation breakdown challenging
- Very strong formation; 20-55ksi UCS
- Obtain wellcores; map UCS profiles; stress to DH conditions, perforate
- IPS-12-04; SPE 159771
Wellcore Penetration Example #2

Coal – shallow, weak, naturally fractured

- Driver: fill gap in industry knowledge re: coal perforating fundamentals
- Obtain coal cores; map UCS profiles; stress to DH conditions, perforate
- SPE 102309
Wellcore Penetration Example #3+

Carbonates – moderate & high strength

• Evaluate candidate perforating strategies
• Confirm model predictions
• Various - unpublished
B. Wellcore Penetration, Cleanup, Inflow Performance

Example

- Moderate strength sandstone
- Offshore environment
- Assess penetration, cleanup, inflow performance by current and alternate perforating techniques
Wellcore Penetration, Cleanup, Inflow Performance

Overview (1/2)

- Obtain wellcore; prepare, clean
- Assemble into test cell; establish initial permeability
- Perforate at field conditions (static & dynamic)
- Assess flow performance
Wellcore Penetration, Cleanup, Inflow Performance

Overview (2/2)

- Obtain wellcore; prepare, clean
- Assemble into test cell; establish initial permeability
- Perforate at field conditions (static AND dynamic)
- Assess flow performance
- Establish penetration performance & flowfield
C. Tunnel Stability & Sanding Propensity Using Reservoir Wellcore

2 examples
1. Deepwater, offshore asset – oil producer
2. Deepwater, offshore asset – high rate gas producer
Wellcore: Tunnel Stability & Sanding #1

Deepwater offshore – oil producer

- Driver: assess whether C&P is feasible completion strategy
  - Is mechanical sand control required, or perf for sand prevention OK?
  - SC “insurance” can be expensive, esp. if well performance is compromised
  - What about later in well’s life: depletion stress, watercut?
  - Minimal sand production might be acceptable, if within facilities constraints

- Perforate wellcores @ DH conditions, flow, stress, watercut
- Also, drilled hole tests
- Test results + modeling + interpretation → field recommendation
Deepwater offshore – high rate gas producer

- Driver: Assess whether C&P is feasible completion strategy
  - Goal = reliable, low skin completion for life of well
  - Goal = zero sand tolerance

- Perforate wellcores @ DH conditions (gas in pores)
  - high-rate flow (gas) *
  - increase rate & stress to simulate depletion
  - Collect any sand produced in fine mesh filters

- Test results + modeling + interpretation → field recommendation

* Scaling lab rates ← → field rates critical; taking into account reservoir $P$, $T$ (incl. at depletion)
Summary

• Perforating Flow Laboratory entering 7th decade
• Reservoir wellcores can
  • be a useful part of a perforating laboratory program
  • provide guidance on completion strategy, in ways outcrop cannot
  • be the best way to assess how the actual reservoir will respond (eg to depletion stress, watercut, etc.)
• It’s ideal, though not absolutely necessary that cores are:
  • as large as possible
  • not yet slabbed
• Perforating / completion concerns should be considered early in reservoir’s lifecycle, when cores are first taken
• Interpretation can be key to translating results to the field