Propellant Disappearing Gun Concept Trials

Phase 2

Mark Brinsden
13 May 2014
Contents

- Purpose of the GameChanger
- Envisaged solution
- Results Phase 2
- Next steps
- Way Forward after Graduation
Purpose of the GameChanger

- Develop a gun that could be run on completion and disappear
- This can lead to a fast well turnaround and reduce post-perf shoot & pull reservoir damage in horizontal wells
- The gun would replace some existing technology (i.e. can be widely applied)
- Potential high value: For example 500 perf jobs with 2 days rig savings per job would lead to approx. $1 B savings. (example subsea wells over a 10 year period)
- Potential increase in well productivity, due to post perf damage mitigation and improved perforator performance.
- Leads into a full family of new propellant and non propellant disappearing gun systems, including guns suitable for more effective remedial perforation and stimulation of existing depleted well stock.
Envisaged Solution

- A carbon fiber reinforced polymer (CFRP) housing
- Optimally distributed propellant system
- Key Challenges/Risks
 - CFRP debris housing should be sufficiently small (< 10mm x 10mm) to flow back
 - CFRP strong enough to withstand moderately high pressure and temperature
Recap Phase 1

$350k

- In phase 1 a possible design concept has been tested, but:
 - Housing strength not good enough
 - CFRP debris dimensions Larger than 5mm x 5 mm

- Phase 2 plan:
 - Improved housing
 - Optimized shaped charge configuration and propellant loading tube
 - Optimized propellant load
 - Full scale test
 - Carry out small scale tests to cost effectively review / rule out various alternatives
Changes in concept in phase 2

- 6.7 mm thick CFRP housing self supporting and made from tougher (less brittle) carbon fibre
- Potassium Perchlorate Epoxy hollow propellant core developed:
 xx% oxidizer / yy% epoxy – advanced vacuum and ultrasonic molding technology
- 9 x Zinc 32g HMX DP2 shaped charges with external helical detcord integrated into propellant core (60~ phasing, 16.5 shots per meter 5spf) Shot density could be increased.
- Total TNT Equivalent ~1.5 kg
Results Phase 2: Full scale Test

- Closed vessel test
 - **Assembly loaded** and **fired** inside 20 mm thick steel closed vessel under 400 bar pressure
 - Bottom, walls and lid fail at ~ 2000 bar
 - Rupture disc in lid fails at ~ 750 bar
 - Closed vessel is retained by 400 mm concrete and 26 mm steel container
 - (no steel container used under phase I)
Results Phase 2: Full scale Test - ASSEMBLED

Closed vessel test — Assembly loaded and fired inside 20 mm thick steel closed vessel under 400 bar pressure — Bottom, walls and lid fail at ~ 2000 bar — Rupture disc in lid fails at ~ 750 bar — Closed vessel is retained by 400 mm concrete and 26 mm steel container (no steel container used under phase I)
Results Phase 2: Full scale Test - LOADED

Closed vessel test — Assembly loaded and fired inside 20 mm thick steel closed vessel under 400 bar pressure — Bottom, walls and lid fail at ~ 2000 bar — Rupture disc in lid fails at ~ 750 bar — Closed vessel is retained by 400 mm concrete and 26 mm steel container (no steel container used under phase I).
Results Phase 2: Full scale Test - FIRED

Closed vessel test—Assembly loaded and fired inside 20 mm thick steel closed vessel under 400 bar pressure—Bottom, walls and lid fail at ~ 2000 bar —Rupture disc in lid fails at ~ 750 bar—Closed vessel is retained by 400 mm concrete and 26 mm steel container (no steel container used under phase I)
Results Phase 2: Full scale Test

— Propellant and Zinc charges disappeared 100%
— 2/3 of CFRP housing completely disappeared (~ 64% compared to ~ 50% in phase I design)
— CFRP debris
 — sizes ≤ 80 x 60 mm (compared to ≤ 50 x 50 mm under phase I)
 — both delaminated and full-thickness pieces
Results Phase 2: small scale Test (CFRP alternatives)

- Explosive sheet, inside grid and/or outside pre-fragmentation
 - Inside grid to direct cutting hot gasses, outside scoring to create weak spots when expanding
 - **Fired under water** (fired in air not representative)
Results Phase 2: small scale Test (CFRP alternatives)

- **Results**

 - 1 mm Semtex versus 4.0 mm CFRP with brittle M55J fibres
 - 2 mm thick 5x5mm inside grid & 1.0 mm deep 5x5mm outside scoring
 - debris size =< 25 x 25 mm (only grid or only scoring delivered bigger debris sizes)

 - 1 mm Semtex versus 6.7 mm CFRP with tough T700 fibres
 - 2 mm thick 5x5mm inside grid & 1.5 mm deep 5x5mm outside scoring
 - debris size =< 40 x 60 mm

 - 1 mm Semtex versus 6.7 mm CFRP with brittle M55J fibres
 - 2 mm thick 5x5mm inside grid & 1.5 mm deep 5x5mm outside scoring
 - debris size =< 20 x 30 mm
 - 2 mm thick 5x5mm inside grid
 - debris size =< 20 x 30 mm

 - CFRP with brittle fibres breaks up more easily than with tough fibres (regardless of outside scoring)
Results Phase 2: Summary

- CFRP housing 6.7 mm
 - Self-supporting
 - Designed for **400 bar pressure at 130°C**
 - Produced from tough T700 carbon fibers

- Propellant tube with helical det cord
 - Volume reduced to 1/3 of solid core, improved combustibility
 - Less but more powerful shaped charges (made of Zinc)
 - Overall power reduced to 40% of solid core – NEED TO REDUCE FURTHER

- Closed vessel test: ≤ 80x60mm CFRP debris size

- CFRP with brittle fibres breaks up more easily than with tough fibres