Advanced Modeling of Perforating System Performance

Brenden Grove, Jeremy Harvey, Lang Zhan, Carlos Bauman, Andy Martin
Advanced Modeling of Perforating System Performance

Why Perforate?

- Penetration
- Cleanup
- Inflow Performance
- Gun Shock

Integrated Workflow for Job Design
Why Perforate?

- Perforating is a fundamental part of any well completion.
- It provides the connection between wellbore and virgin reservoir rock.
- It provides the conduit for processes such as hydraulic fracturing or acid stimulation.
- The success of a gravel pack completion strongly depends on perforating parameters.
Additional Benefits of Good Perforating Practices

- Operational efficiency improves such as reduced cleanup periods during a well test or reduced N$_2$ or completion fluid requirements to fire guns.

- Deep, clean perforations prolong the life of a well by reducing near-wellbore pressure drop.

- High pressure drop leads to many well problems: scale and asphaltene buildup, fines migration or condensate banking, water coning or production below bubble point.
Modeling a Perforated Completion – 4 Stages

- Stage 1: Gathering Data
- Stage 2: Perforation Tunnel Geometry Estimation
- Stage 3: Perforation Tunnel Condition
- Stage 4: Inflow Performance Estimation
- Stage 5: Wellbore & Completion Effects
How Do We Choose the Best?

- Section 2 Penetration Tests in Stressed Rock

- Section 4 Flow Efficiency Tests in Stressed Rock

- Model
Perforation Time Scales

- Charge detonation
- Perforation tunnel (& initial damage) created
- Jet Formation

Pressure inside the gun varies widely, in both time and space (shocks subsiding, gun internal pressure decaying and reaching spatial equilibrium)

- Gun-wellbore-formation interactions
- Wellbore dynamics
- Perforation cleanup

- Reservoir response
- Fluid column response
- Hardware & completion response

Time (sec)

10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2}

2013 Latin American Perforating Symposium

Gun internal has reached spatial equilibrium, begins to “see” and interact with wellbore
Road to a Comprehensive Rock-Based Penetration Model

- Getting Away from Concrete
- >1,000 Experiments in Stressed Rock
- Formation effects
 - Weak to strong rocks tested
 - Largest ever range of stresses: 1,000 to 20,000 psi (~70 to 1,400 bar)
 - Pore pressure influence
 - Range of rock types
- Charge effects
 - Different families of charges used
 - Carrier and capsule charges
From *Effective* stress to *Ballistic* stress

\[DOP = f(\text{effective stress}) \]

\[P_{\text{eff}} = P_c - P_p \]

Ballistic pore pressure coefficient (bppc) “a”

\[P_{\text{ball}} = P_c - a \times P_p; \ a \sim 0.5 \]

DoP = f(ballistic stress)

 bppc is a rock property

1980

1990

2000

2010

Confirmed at higher stresses

- **HVIS 2007**
- **SPE 111778**
- **SPE 151846**
Single Formation Parameter: \textit{Ballistic Indicator Function}

- Formation characterized by a single term
 - F_{bi} combines UCS and ballistic stress
- High UCS rocks have less dependence on stress

\begin{equation}
F_{EI} = UCS + F_{bi}P_{eff}
\end{equation}

\textbf{Before F_{bi}:} Multiple performance curves for single charge

\textbf{With F_{bi}:} collapse to a single curve
Penetration Model – Formation Effects

- Penetration decreases exponentially with increasing F_{bi}

Universal behavior
- Carrier & capsule systems
- 2” to 4-1/2” gun sizes

$$DoP = DoP_{ref} e^{\alpha_0 (F_{bi,ref} - F_{bi})}$$
Penetration Model – Charge Effects

- Significance of having two parameters
 - 1st parameter \((DoP_{\text{ref}}) \), gives general indication of how “high” the curve is
 - 2nd parameter \((\alpha_0) \) is related to charge optimization (i.e. for “hard” vs. for “soft” targets)

\[
DoP = DoP_{\text{ref}} e^{\alpha_0 (F_{bi,\text{ref}} - F_{bi})}
\]

Figure 10 – Implications of charge optimization
Road to a Dynamic Underbalance Perforation Cleanup Model

- Static UB known since at least early 1950’s
 - Used successfully (though not always with consistent results) for 5-6 decades
 - First cleanup models not until 1980’s
- Dynamic UB phenomena reported 2001
 - Extensively proven effective in field (multiple environments)
 - Additional laboratory studies through mid-2000s to better understand the physics
 - Extensive laboratory program launched late 2000’s

Much more complicated than penetration
Perforation cleanup deals with at least 2 main elements:
- How efficiently does perf flow? (Q/dP)
- Where does flow come from?

DUB perforation cleanup is dictated by:
- Wellbore pressure transients *
- Formation properties

- Multiple parameters (magnitude, recovery duration, rate)
- Understanding & controlling wellbore pressure transients
Dynamic Underbalance Perforation Cleanup Model

Status
- Model developed
- Considers wellbore pressure transients and formation properties
- Implemented into inflow simulator

EWAPS 12-8
Gun Shock Model

- Gun system acts as a pressure source/sink generating pressure waves in the wellbore.
- Pressure waves acting on cross-sectional area changes produce gun shock loads.
- Model predicts interactions among gun, wellbore, reservoir, and completion hardware.
Workflow for Predicting Perforating System Performance

- Rock based penetration model
- Wellbore dynamics prediction
- DUB cleanup model
- Inflow prediction (net and per-zone)
Summary

- Shaped charges should be characterized in stressed rock, not concrete.
- Perforation cleanup dependant on shot-time wellbore dynamics, formation properties, wellbore fluids.
- Gunshock depends on gun/wellbore/formation interactions.
- Accurate models for penetration depth, cleanup, and gun shock phenomena are essential for reliable estimation of well performance and operational risk.
Advanced Modeling of Perforating System Performance

Thank You

Brenden Grove, Jeremy Harvey, Lang Zhan, Carlos Bauman, Andy Martin